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Abstract
A model based upon excluded volume considerations is presented for the connectedness
percolation thresholds in polydisperse systems of cylindrical rod-like nanoparticles. The
dependence of the percolation threshold upon polydispersity index and number-averaged aspect
ratio is examined for two different distribution functions for the rod radii and lengths. The
importance of accounting for polydispersity is explored in the context of measurements of the
elastic moduli and electrical conductance in fibre-filled nanocomposites.

1. Introduction

It has been frequently suggested that the formation of
geometrically connected, percolating networks of rod-like
filler particles plays a key role in the mechanical reinforcement
and conductive properties, both electrical and thermal, of
composite materials [1–6]. The critical particulate volume
fraction at which a percolating cluster is initially formed
depends strongly on the aspect ratio of the filler species [7],
and is referred to as the percolation threshold [8]. The
dependence of the percolation threshold upon aspect ratio
has been investigated extensively in studies employing
excluded volume arguments [9–12] and computer simulation
techniques [7, 11, 13], as well as integral equation
methods [14]. Although percolation in a population of
polydisperse spheres has been examined recently [15], such
theoretical efforts have focused primarily upon monodisperse
systems of rod-like particles which are characterized by
a sharp, well-defined aspect ratio. The assumption that
filler particles are describable by a single, average aspect
ratio, i.e. that they are effectively monodisperse with regards
to shape, underlies several efforts to model the elastic
coefficients of fibre-reinforced nanocomposites [1, 16–18].
However, recent experiments reveal that nanoparticles derived
from natural sources, e.g. whiskers of nanocrystalline
cellulose, typically exhibit significant degrees of polydispersity
with respect to both particle lengths and widths [19–21].
Polydispersity with respect to the diameter has been reported
for individual single-walled carbon nanotubes (SWNTs) grown
by chemical vapour deposition [22], and may also appear as

a consequence of imperfect dispersion, lateral bundling, and
agglomeration within SWNT-filled composites [23, 24].

The present report generalizes a mean-field, excluded
volume-based model for the percolation threshold [9, 10] to
treat polydisperse systems of cylindrical rods. The percolation
thresholds for subgroups of the rod population are expressed
in terms of the particle dimensions by determining the mean
number of inter-particle contacts as a function of the volume
fraction, aspect ratio, and size distribution. Illustrative
calculations are performed for two choices of the particle
size distribution function. Preliminary applications of our
model are presented for cellulose whisker and fibre-based
composites. The approach developed in this account provides a
step towards addressing effects due to particle size (and shape)
polydispersity in fibre-filled nanomaterials.

2. Random contact model for the percolation
threshold in polydisperse systems

We consider a polydisperse system of isotropically oriented,
rigid, cylindrical rod-like particles, for which the symbol
ρ denotes the number of rods (of all radii R and lengths
L) per unit volume. Through suitable choices for the
radii and aspect ratios, this model may be used to describe
composites reinforced by carbon nanotubes [4], silicate
nanorods [25], or whiskers of nanocrystalline cellulose [1, 2].
The rods are assumed to be located with respect to each
other in a spatially uncorrelated, random, and homogeneous
manner. A distribution function f (R, L) is defined such
that f (R, L) dR dL is the number fraction of rods with radii
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and lengths within the intervals (R, R + dR) and (L, L +
dL), respectively. The function f (R, L) is normalized by
requiring that

∫ ∞
0 dR

∫ ∞
0 dL f (R, L) = 1. The overall

rod volume fraction, denoted φ, is thus given by: φ =
πρ

∫ ∞
0 dR

∫ ∞
0 dL R2 L f (R, L). Within the framework of

the random contact model, the average number of contacts
(designated nc) which an individual rod of radius R1 and length
L1 experiences with all the other rods in the system is [9, 10]:

nc(R1, L1, φ) =
(ρ

2

) ∫ ∞

0
dR2

∫ ∞

0
dL2 f (R2, L2)V

e
12

(R1, R2, L1, L2), (1)

where V e
12 represents the excluded volume between a pair of

rods with radii and lengths (R1, R2) and (L1, L2), respectively.
For an isotropic rod orientational distribution function, the
angle-averaged excluded volume V e

12 is [26]:

V e
12 = π(R2

1 L1 + R2
2 L2)+

(π

2

)
[(πR1 R2 + L1 L2)

× (R1 + R2)+ πR1 R2(L1 + L2)+ R2
1 L2 + R2

2 L1]. (2)

We assume that for a randomly chosen rod of radius R1

and length L1 to have a non-zero probability of belonging to a
percolating network, such a rod must on average experience
a critical minimum number of contacts [7, 9] (denoted n∗

c )
with the other rods in the system, where n∗

c is treated as
being independent of R1 and L1. It should be pointed out
that Monte Carlo simulation-based investigations [7, 11, 13]
of monodisperse rod systems find a weak dependence of n∗

c
upon R1 and L1, particularly for modest aspect ratios (for
example [11], reports a reduction by approximately 20% in
n∗

c when the rod aspect ratio is increased by an order of
magnitude). Our present work neglects this dependence,
which is an approximation whose accuracy is expected to
improve with increasing aspect ratios [7, 11]. Within these
approximations, the critical rod volume fraction above which
the percolation probability (i.e. the probability of belonging to
a percolating cluster) becomes non-zero for rods with radius
R1 and length L1 is:

φ∗(R1, L1)= 2πn∗
c

∫ ∞
0 dR

∫ ∞
0 dL R2 L f (R, L)

∫ ∞
0 dR2

∫ ∞
0 dL2 f (R2, L2)V e

12(R1, R2, L1, L2)

= {2n∗
c〈R2 L〉}{[R2

1 L1 + 〈R2 L〉 + ( 1
2 ){R1(R1 + L1)(π〈R〉

+ 〈L〉) + (πR1 + L1)(〈RL〉 + 〈R2〉)}]}−1, (3)

where the averages 〈R p Lq〉 are defined as: 〈R p Lq〉 =∫ ∞
0 dR

∫ ∞
0 dL f (R, L)R p Lq . The result presented in

equation (3) is derived from equations (1) and (2) by imposing
the requirement that nc(R1, L1, φ

∗) = n∗
c at the percolation

threshold. The value of the rod volume fraction φ∗(R1, L1) for
which the condition that nc(R1, L1, φ) = n∗

c is satisfied clearly
varies with the dimensions (R1, L1) of the particular particle
in question. The ‘percolation threshold’ for a polydisperse
system is therefore broadened into a range of volume fractions
over which particles of varying sizes and aspect ratios acquire
non-zero percolation probabilities in a continuous manner.
Equation (3) provides a model for this dependence of the
overall rod volume fraction at the percolation threshold upon
R1, L1, and f (R, L). For a specified distribution function
f (R, L), we denote by φ∗

min the smallest rod volume fraction

for which at least some of the rods in the sample population
exhibit a non-vanishing percolation probability. Conversely,
we let φ∗

max denote the rod volume fraction above which the
condition: nc(R1, L1, φ) � n∗

c is satisfied for all the rods in the
system. We calculate φ∗

min(φ
∗
max) by minimizing (maximizing)

the right-hand-side of equation (3) with respect to R1 and L1

over the ranges of these variables for which f (R1, L1) is non-
zero. For the special case of a perfectly monodisperse system
in which all the rods have identical radii R0 and lengths L0, the
distribution function f (R, L) is: f (R, L) = δ(L − L0)δ(R −
R0), where ‘δ’ represents the Dirac delta function. For such
a monodisperse system, φ∗

min and φ∗
max are equal and can be

expressed as:

φ∗
min = φ∗

max = φ∗
monodisperse

= 2n∗
c (L0/R0)[

(L0/R0)
2 + (π + 3) (L0/R0)+ π

] . (4)

In investigating the consequences of equation (3), we
consider the following pair of models (designated Types I
and II) for the distribution function f (R, L):

Type I: In this case, we assume that all rods in the system
have identical radii, denoted R0, and vary only with respect
to their lengths and aspect ratios. We define the rod aspect
ratio, denoted ψ , as the ratio between the length and radius of
a given rod, i.e. ψ = L/R. The distribution function f (R, L)
in this instance becomes: f (R, L) = fL(L)δ(R − R0), and
equations (2) and (3) lead to:

φ∗(R0, L1) = 2n∗
c (Ln/R0){(

L1
R0

) [(
Ln
R0

)
+ (3+π)

2

]
+ π + (

3+π
2

) (
Ln
R0

)} ,

(5)
where Ln denotes the number-averaged rod length, defined as:
Ln = 〈L〉 = ∫ ∞

0 dR
∫ ∞

0 dL f (R, L)L. For fixed values of Ln

and n∗
c , the threshold φ∗(R0, L1) is minimal (maximal) for the

longest (shortest) rods in the system, whose lengths we denote
Lmax(Lmin). Furthermore, for any acceptable specification of
the rod length distribution function fL which has an upper
cutoff such that fL vanishes when L exceeds Lmax, it can be
shown that for a fixed value of (Lmax/R0), the percolation
threshold φ∗

min is always lower for a polydisperse than for a
monodisperse sample (for which fL(L) = δ(L − Lmax)).
Similarly, for any acceptable rod length distribution function
fL which has a lower cutoff such that fL vanishes when L
is smaller than Lmin, it can be shown that for a fixed value
of (Lmin/R0), the percolation threshold φ∗

max is always larger
for a polydisperse than for a monodisperse sample (for which
fL(L) = δ(L − Lmin)). Given that n∗

c is expected to increase
somewhat with decreasing aspect ratios [7, 11, 13], estimates
for φ∗

max based upon this model for polydispersity are likely to
underestimate the exact values as determined from (say) Monte
Carlo simulations.

Type II: In this case, we assume that all rods in the
system have identical aspect ratios ψ , while their radii and
lengths vary in a perfectly correlated manner, i.e., that f (R, L)
is given by: f (R, L) = fR(R)δ(L − ψR). This model
is motivated by a recent study of nanocrystalline cellulose
whiskers derived from a range of source materials [20], which
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found strongly correlated variations in the lengths and widths
of these nanoparticles. Equations (2) and (3) now yield:

φ∗(R1, L1 = ψR1)

= 4n∗
cψ〈R3〉

{2ψ(R3
1 + 〈R3〉)+(1 + ψ)(π + ψ)(R2

1〈R〉+ R1〈R2〉)} ,
(6)

where the nth moment of the rod radius distribution, denoted
〈Rn〉 is defined as: 〈Rn〉 = ∫ ∞

0 dR
∫ ∞

0 dL f (R, L)Rn .
For a specified distribution function f (R, L) of this type,
the percolation threshold φ∗(R1, L1 = ψR1) is minimal
(maximal) for the largest (smallest) rods in the population,
whose radii and lengths we denote respectively Rmax(Rmin)

and Lmax(Lmin) = ψRmax(ψRmin). Additionally, for any
acceptable specification of the distribution function fR which
has an upper cutoff such that fR vanishes when R exceeds
Rmax, it can be shown that for fixed values of Rmax and ψ , the
percolation threshold φ∗

min is always lower for a polydisperse
than for a monodisperse sample (for which fR = δ(R− Rmax)).
Similarly, for any acceptable specification of the distribution
function fR which has a lower cutoff such that fR vanishes
when R is smaller than Rmin, it can be shown that for fixed
values of Rmin and ψ , the percolation threshold φ∗

max is always
larger for a polydisperse than for a monodisperse sample (for
which fR = δ(R − Rmin)). It is to be noted that equation (6)
involves the first three moments of the rod size distribution,
whereas only the first moment of the rod length appears in
equation (5).

3. Results and concluding remarks

We next perform illustrative calculations to explore the
consequences of equations (5) and (6) for the uniform
distribution function specified below:

fx(x) = 0, x < xmin,

fx(x) = 1/(xmax − xmin), xmin � x � xmax, and

fx (x) = 0, xmax < x,
(7)

where the variable x corresponds respectively to L and R
for the aforementioned Type I and Type II polydispersity
models. In each case, the rod shape distribution is prescribed
by specifying (i) the number-averaged aspect ratio ψn , defined
as: ψn = ∫ ∞

0 dR
∫ ∞

0 dL f (R, L)(L/R), and (ii) the ratio
of the length-averaged rod length L l, defined as: L l =∫ ∞

0 dR
∫ ∞

0 dL L2 f (R, L)/Ln , to the number-averaged rod
length Ln . We employ the symbol PL to denote the ratio
of the length-averaged to the number-averaged rod lengths,
i.e. PL = L l/Ln . Following the approach adopted in [20],
we treat this quantity as a polydispersity index for the system
of rods. For the uniform distribution adopted in equation (7),
PL is restricted to the range (1 � PL � 4/3), as otherwise
xmin must adopt unphysical negative values. This range of
PL includes the polydispersities of all the samples examined
in [20] with the exception of the whiskers derived from tunicin,
although the nature of the function f (R, L) reported in that
study [20] differs significantly from the simplified model

Figure 1. The rod volume fractions at the percolation thresholds φ∗
min

and φ∗
max, normalized by their values for a monodisperse system, are

shown as functions of the polydispersity index PL for fixed values of
the number-averaged aspect ratio ψn . In each case, the upper (lower)
branches of the curves represent φ∗

max(φ
∗
min) as functions of PL. The

solid and broken lines correspond to results from Type I and Type II
models for the rod shape distribution functions, respectively. For
each pair of curves (solid and broken), ψn equals 50 and 500, in that
order of increasing deviation from the line φ∗/φ∗(PL = 1) = 1. The
lower pairs of solid and broken curves appear nearly coincident and
indistinguishable on the scale of the figure.

adopted in equation (7). The parameters (Lmin, Lmax) and
(Rmin, Rmax), as well as the required moments of the rod
length/radius distributions, are determined in terms of ψn and
PL. The percolation thresholds φ∗

min(φ
∗
max) are then obtained

by substituting Lmax(Lmin) for L1 and Rmax (Rmin) for R1 in
equations (5) and (6), respectively.

For the model calculations presented below, the critical
number of inter-particle contacts per rod at the onset of
percolation (n∗

c ) is chosen to equal 0.6 independent of R and L.
Our selection of this specific value for n∗

c enforces quantitative
agreement with the asymptotic dependence reported for
monodisperse systems with large aspect ratios in the computer
simulation study of [7]. Additionally, if we consider hexagonal
SWNT bundles with effective radii of 2.1 nm and lengths
of 3 μm (wherein each bundle comprises seven individual
nanotubes [23]), equation (4) together with the choice n∗

c = 0.6
suggests a percolation threshold located at φ∗

monodisperse ≈ 8.4×
10−4 (or 0.084% by volume). This estimate, which assumes
that (i) the bundles themselves are of uniform dimensions,
and that (ii) every individual nanotube is a member of such a
bundle, is consistent with the observation of a sharp increase
in electrical conductivity by approximately nine orders of
magnitude [23] when the SWNT volume fraction is increased
from 0.02% to 0.1%.

Figure 1 displays the dependences of φ∗
min and φ∗

max upon
the polydispersity index PL for fixed values of the number-
averaged aspect ratio ψn . The dependences of φ∗

min and φ∗
max

upon ψn for fixed values of PL are presented in figure 2. A
broken line in figure 2 indicates the inverse dependence (φ∗ ∝
1/ψn) expected asymptotically in the limit of large aspect
ratios [7, 9, 10]. Results for a monodisperse system, calculated
within the present model from equation (4), correspond to the
filled diamonds in figure 2. The open squares in figure 2
represent the threshold for a monodisperse system evaluated
from equation (8) of [7], which accurately describes the
findings of the computer simulations reported in that study
for aspect ratios ψ � 20 (see figure 4 of [7]). In each
case, polydispersity in the rod population lowers (elevates)
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Figure 2. The rod volume fractions at the percolation thresholds φ∗
min

and φ∗
max are shown as functions of the number-averaged aspect ratio

ψn for fixed values of the polydispersity index PL. The filled
diamonds represent results for a monodisperse system (PL = 1)
calculated within the present model from equation (4). The open
squares represent results for a monodisperse system as calculated
from equation (8) of [7], and closely describe the computer
simulation results reported in that account for aspect ratios ψ
exceeding 20 (see figure 4 of [7]). The curves located above (below)
that for the monodisperse system represent results for φ∗

max(φ
∗
min).

The solid and broken lines correspond to results from Type I and
Type II models for the rod shape distribution functions, respectively.
For the solid as well as the broken lines, PL equals 1.05 and 1.25 for
both φ∗

min and φ∗
max, in the order of increasing distance from the curve

representing the monodisperse system.

the percolation threshold φ∗
min(φ

∗
max), although the dependence

upon ψn is largely unaffected. Over the range of volume
fractions between φ∗

min and φ∗
max, the percolation probability

transitions in a continuous manner from being zero (for φ <
φ∗

min) to non-zero (for φ > φ∗
max) for all the nanoparticles in

the system. The width of the percolation transition, i.e. the
separation between φ∗

min and φ∗
max, increases dramatically with

PL for both polydispersity models considered in the present
investigation. This widening is significantly more pronounced
for the Type II than for the Type I polydispersity model, and in
both cases φ∗

max is predicted to be more sensitive to PL than is
φ∗

min.
The broadening of the percolation transition seen in

figure 2 may provide a partial explanation for the smooth
and continuous variation of the modulus as a function
of the filler volume fraction which has been observed in
cellulose whisker reinforced nanocomposites [1, 2, 19]. For
example, the study in [19] attributes an average aspect ratio
(ψn) of approximately 135 to the dispersed nanoparticles.
Equation (4) suggests that the percolation threshold for
perfectly monodisperse rods with this value of ψn should be
approximately φ∗

monodisperse ≈ 8.5 × 10−3, i.e. about 0.85% by
volume. However, if we instead assume a length polydispersity
index of PL = 1.15, which is comparable to those reported
for nanoparticles derived from cotton linters and commercially
available microcrystalline cellulose in [20], the percolation
transition (at fixed ψn = 135) broadens to encompass the
volume fraction ranges: 0.513% < φ < 2.47% for the Type I,
and 0.521% < φ < 4.92% for the Type II polydispersity
models, respectively. These estimates for φ∗

min and φ∗
max

clearly depend strongly upon the specific choice for the
distribution function f (R, L), and both employ the assumption

of a uniform distribution of rod dimensions (equation (7)).
Nevertheless, it is noteworthy that figure 5 of [19] reveals
a smooth and continuous increase in the composite shear
modulus for volume fractions of up to approximately 6%, in
marked contrast to the prediction from a percolation model
which does not explicitly address polydispersity effects. Note
also that these calculations, as well as those presented in
figures 1 and 2, employ the approximation of a uniform
distribution function as specified in equation (7). The adoption
of a size distribution function characterized by a long, slowly
decaying tail (e.g. the Schulz distribution) may be expected
to further widen the range of volume fractions which separate
φ∗

min from φ∗
max.

Polydispersity effects are also likely to play a role
in determining critical volume fractions in nanocomposites
containing electrically conducting filler particles. As another
preliminary application of our present approach, we consider
the polyurethane-based composites described in [27], which
incorporated cellulose fibres coated with metallic copper.
The average radii (assuming the entire fibre surface had
been successfully coated) and lengths of the fibres were
approximately 23.5 μm and 278 μm, respectively. Based on
the histogram of fibre lengths provided in figure 2 of [27],
we estimate the largest and smallest fibre lengths Lmax and
Lmin to have been approximately 700 μm and 50 μm,
respectively (a similar histogram was not provided for the
fibre diameters). Based on these data, our Type I model
for polydispersity (equation (5)) with ψn = 278/23.5 =
11.83, Lmax = 700 μm, and R0 = 23.5 μm, suggests
that φ∗

min ≈ 0.0294. A comparable calculation within the
Type II polydispersity model, employing (i) the parameters
ψ = ψn = 11.83 and Rmax/Rmin = Lmax/Lmin =
700/50 = 14, and (ii) the assumption of a uniform distribution
function over fibre radii (equation (7)), yields by way of
equation (6) the estimate that φ∗

min ≈ 0.0379. Equation (4)
suggests that a monodisperse population of rods with an
aspect ratio of 11.83 would have a percolation threshold
of approximately φ∗

monodisperse ≈ 0.0658. Interestingly, the
composites investigated in [27] showed a measurable (although
small, of order ≈10(0) �−1 m−1) electrical conductance, as
well as resonances in the dielectric permittivity, for volume
fractions greater than 0.04 (4%). The resonances observed for
volume fractions above 4% were attributed to the formation
of inter-fibre contacts [27]. It is possible (as suggested
in [27, 28]) that the low conductances measured in this
regime could have arisen from either (i) incomplete coating
of the fibre surfaces, and/or (ii) from weak electrical contacts
between the fibres. Given that the instrumental detection
threshold for conductance in [27] was estimated as being
≈10−9 �−1 m−1, the conductivities measured for fibre volume
fractions above 4%, although small, nevertheless represent
an increase in this quantity by approximately nine orders of
magnitude. These observations therefore may not be entirely
inconsistent with incipient geometric percolation. It should,
however, be emphasized that the close agreement between
the values of φ∗

min as calculated within our model and the
critical volume fraction above which dielectric resonances and
measurable conductivities were observed in [27] is almost
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certainly fortuitous, especially in view of the highly non-
uniform distribution of fibre lengths reported in that work.

Accounting for the effect of polydispersity upon
percolation thresholds will be important in the microscopic
modelling of fibre-reinforced composites [29] for such efforts
to proceed beyond the invocation of a single, effective
aspect ratio [1, 16–18]. Incorporating information regarding
the particle size and shape distribution will be especially
relevant for nanoparticles derived from lignocellulosic sources,
given that the aspect ratios, dimensions, and polydispersities
of such filler species depend upon both the method
of preparation [30, 31] and their ultimate biological
origins [20, 21]. The methodology described in the
present account provides a step towards the development
of such a theoretical framework, and may also be of
value in investigating the formation of conducting pathways
in nanocomposites containing SWNTs [23], or metallized
cellulose particles [27], or lipid tubules [28].
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